What is Houshold Ultrasonic Cleaner and Why Do We Use Them?

28 Jul.,2025

 

Ultrasonic cleaning - Wikipedia

Method of cleaning using ultrasound

Ultrasonic cleaning is a process that uses ultrasound (usually from 20 to 40 kHz) to agitate a fluid, with a cleaning effect. Ultrasonic cleaners come in a variety of sizes, from small desktop units with an internal volume of less than 0.5 litres (0.13 US gal), to large industrial units with volumes approaching 1,000 litres (260 US gal).

For more information, please visit our website.

The principle of the ultrasonic cleaning machine is to convert the sound energy of the ultrasonic frequency source into mechanical vibration through the transducer. The vibration generated by the ultrasonic wave is transmitted to the cleaning liquid through the cleaning tank wall so that the micro-bubbles in the liquid in the tank can keep vibrating under the action of the sound wave, destroying and separating the dirty adsorption on the surface of the object.

Depending on the object being cleaned, the process can be very rapid, completely cleaning a soiled item in minutes. In other instances, cleaning can be slower, and exceed 30 minutes.[1]

Ultrasonic cleaners are used to clean many different types of objects, including industrial parts, jewelry, scientific samples, lenses and other optical parts, watches, dental and surgical instruments, tools, coins, fountain pens, golf clubs, fishing reels, window blinds, firearm components, car fuel injectors, musical instruments, gramophone records, industrial machined parts, and electronic equipment, optical lenses, etc. They are used in many jewelry workshops, watchmakers' establishments, electronic repair workshops,[2] and scientific labs.

History

[edit]

Ultrasonic cleaning has been used industrially for decades,[when?] particularly to clean complex shape parts and/ or having small intricate holes/galleries, and to accelerate surface treatment processes.[3]

It appears that ultrasonic cleaners developed as a natural evolution of several earlier inventions that used vibrations to agitate and mix substances, and thus there is no clear "inventor" of ultrasonic cleaning. US patent , issued December , is the earliest patent on record that specifically uses the term "Ultrasonic cleaning" although earlier patents refer to the use of ultrasound for "intense agitation," "treatment" and "polishing," e.g. US .

By the mid-s there were at least three ultrasonic cleaner manufacturers established in the United States and two in the United Kingdom; and by the s ultrasonic cleaners were widely established for industrial and domestic use.[4][5]

Process characteristics

[edit]

Ultrasonic cleaning uses cavitation bubbles induced by high-frequency pressure (sound) waves to agitate a liquid. The agitation produces high forces on contaminants adhering to substrates like metals, plastics, glass, rubber, and ceramics. This action also penetrates blind holes, cracks, and recesses. The intention is to thoroughly remove all traces of contamination tightly adhering or embedded onto solid surfaces. Water or other solvents can be used, depending on the type of contamination and the workpiece. Contaminants can include dust, dirt, oil, pigments, rust, grease, algae, fungus, bacteria, lime scale, polishing compounds, flux agents, fingerprints, soot wax and mold release agents, biological soil like blood, and so on. Ultrasonic cleaning can be used for a wide range of workpiece shapes, sizes, and materials, and may not require the part to be disassembled prior to cleaning.[6]

Objects must not be allowed to rest on the bottom of the device during the cleaning process, because that will prevent cavitation from taking place on the part of the object not in contact with solvent.[2]

Design and operating principle

[edit]

In an ultrasonic cleaner, the object to be cleaned is placed in a chamber containing a suitable solution (in an aqueous or organic solvent, depending on the application). In aqueous cleaners, surfactants (e.g., laundry detergent) are often added to permit dissolution of non-polar compounds such as oils and greases. An ultrasound generating transducer built into the chamber, or lowered into the fluid, produces ultrasonic waves in the fluid by changing size in concert with an electrical signal oscillating at ultrasonic frequency. This creates compression waves in the liquid of the tank which 'tear' the liquid apart, leaving behind many millions of microscopic 'voids'/'partial vacuum bubbles' (cavitation). These bubbles collapse with enormous energy; temperatures and pressures on the order of 5,000 K and 135 MPa are achieved;[7][8] however, they are so small that they do no more than clean and remove surface dirt and contaminants. The higher the frequency, the smaller the nodes between the cavitation points, which allows for cleaning of more intricate detail.

Transducers are usually piezoelectric (e.g. made with lead zirconate titanate (PZT), barium titanate, etc.), but are sometimes magnetostrictive. The often harsh chemicals used as cleaners in many industries are not needed, or used in much lower concentrations, with ultrasonic agitation. Ultrasonics are used for industrial cleaning and are also used in many medical and dental techniques and industrial processes.

Cleaning solution

[edit]

In some circumstances, ultrasonic cleaners can be used with plain water, but in most cases, a cleaning solution is used. This solution is designed to maximise the effectiveness of ultrasonic cleaning. The primary solvent may be water or a hydrocarbon (historically, toxic solvents such as carbon tetrachloride and 1,1,1-Trichloroethane were used industrially, but have been phased out[9]). There are several formulations, dependent on the item being cleaned and the type of contamination (e.g., degreasing of metal, cleaning of printed circuit boards, removing biological material, and so on).

Reduction of surface tension increases cavitation, so the solution usually contains a good wetting agent (surfactant). Aqueous cleaning solutions contain detergents, wetting agents and other components, which have a large influence on the cleaning process. The correct composition of the solution is very dependent upon the item cleaned. When working with metals, proteins, and greases, an alkaline detergent solution may be specifically recommended. Solutions are typically heated, often around 50–65 °C (122–149 °F), however, in medical applications, it is generally accepted that cleaning should be at temperatures below 45 °C (113 °F) to prevent protein coagulation that can complicate cleaning.

Some ultrasonic cleaners are integrated with vapour degreasing machines using hydrocarbon cleaning fluids: Three tanks are used in a cascade. The lower tank containing dirty fluid is heated causing the fluid to evaporate. At the top of the machine there is a refrigeration coil. Fluid condenses on the coil and descends into the upper tank. The upper tank eventually overflows and relatively clean fluid runs into the work tank where the cleaning takes place. The purchase price is higher than simpler machines, but such machines may be more economical in the long run. The same fluid can be reused many times, minimising wastage and pollution.

Uses

[edit]

Most hard, non-absorbent materials (metals, plastics, etc.) not chemically attacked by the cleaning fluid are suitable for ultrasonic cleaning. Ideal materials for ultrasonic cleaning include small electronic parts, cables, rods, wires, and detailed items, as well as objects made of glass, plastic, aluminium, or ceramic.[10]

Ultrasonic cleaning does not sterilize the objects being cleaned, because spores and viruses will remain on the objects after cleaning. In medical applications, sterilization normally follows ultrasonic cleaning as a separate step.[11]

Industrial ultrasonic cleaners are used in the automotive, sporting, printing, marine, medical, pharmaceutical, electroplating, disk drive components, engineering and weapons industries.

Ultrasonic cleaning is used to remove contamination from industrial process equipment such as pipes and heat exchangers.

Limitations

[edit]

Ultrasonic cleaning is used widely to remove flux residue from soldered circuit boards. However, some electronic components, notably MEMS devices such as gyroscopes, accelerometers and microphones can become damaged or destroyed by the high-intensity vibrations they are subjected to during cleaning. Piezoelectric buzzers can work in reverse and produce voltage, which may pose a danger to their drive circuits.

Safety

[edit]
  • Ultrasonic cleaners can produce irritating, high-frequency noise and hearing protection may be needed in case of continuous exposure.
  • It is recommended to avoid using flammable cleaning solutions because ultrasonic cleaners increase the temperature even when not equipped with a heater. (Some industrial units are specifically certified as explosion proof.)
  • When the unit is running, contact with the cleaning solution could cause thermal or chemical injury; the ultrasonic action is relatively benign to living tissue but can cause discomfort and skin irritation.[12]
  • Ultrasonic cleaners are electrically powered, meaning there is a risk of electric shock in case of malfunction, especially if the cleaning solution comes into contact with electrified components.

See also

[edit]
  • Parts cleaning
  • Acoustic cleaning
  • Washing machine
  • Autoclave
  • Macrosonics
  • Sonication
  • Tumble finishing
  • Vibratory finishing

RND: Everything You Need to Know About Ultrasonic Cleaners

What is Ultrasonic Cleaning?

An ultrasonic cleaner is a sophisticated tool for cleaning a variety of objects, particularly those with hard-to-reach areas or complex components that manual cleaning methods struggle with. Ultrasonic cleaning technology has become essential in sectors like electronics, healthcare, jewellery, aerospace, dental and automotive, offering an ultrasonic cleaning bath that meticulously cleans every nook and cranny.

Professionals in manufacturing, technical services, and engineering can reap significant advantages from an ultrasonic cleaner. This technology not only extends the life and performance of components but also promotes consistent operation by leveraging powerful ultrasonic cleaning capabilities to minimise downtime.

Continue exploring to understand the factors contributing to the efficiency and popularity of ultrasonic cleaner technology in a multitude of fields.

How Does an Ultrasonic Cleaner Work?

The secret behind the effectiveness of an ultrasonic cleaner is cavitation. This phenomenon involves the generation of sound waves through mechanical vibrations in a liquid, leading to the formation and implosion of microscopic bubbles. The implosions which occur within ultrasonic baths bombard the items being cleaned, stripping away grime and debris efficiently without the need for abrasive chemicals.

Items should be arranged in a basket, tray, or glass beaker before immersion in the chosen cleaning fluid to maximise the performance of an ultrasonic bath. The cavitation effect ensures a thorough and even cleanse across the ultrasonic cleaning bath, accessing even the smallest crevices and tight spaces that alternative cleaning methods may overlook. Depending on the application, the cleaning fluid may be water-based, which supports environmental sustainability or solvent-based for a more potent clean.

What Does an Ultrasonic Cleaner Consist of?

An ultrasonic cleaner consists of three parts:

  • The generator
  • The transducer
  • The tank

The Generator

At its core, the generator serves as the heartbeat of an ultrasonic cleaner, transforming AC power from a standard wall outlet into an electrical frequency that activates the transducer, thus driving the ultrasonic cleaning process.

The Transducer

The transducer stands as the pivotal element that produces ultrasonic vibrations within an ultrasonic cleaner, operating at frequencies above the level of human hearing. In regions like Europe and Asia, the majority of ultrasonic cleaners incorporate piezoelectric crystals that convert electrical impulses into ultrasonic energy. These crystals respond to electrical currents and change in size and shape, resulting in consistent linear vibrations. Modern ultrasonic cleaning systems favour ceramic transducers over their metallic counterparts for a more delicate yet efficacious cleaning touch, strategically installed beneath the tank to propagate vibrations.

If you are looking for more details, kindly visit RedCrown.

The Tank

Within the ultrasonic cleaning bath, the component, cleaning solution, and the specifically designed basket, tray, or glass jar for submerging the item coexist. Tanks for ultrasonic cleaner baths come in various sizes to hold different volumes of solvent. Distrelec’s own brand, RND, offers a selection that includes a variety of ultrasonic bath sizes, each engineered to meet diverse requirements. These digital ultrasonic cleaners are not only equipped with a basket but also boast advanced temperature control and timer functions for precise cleaning cycles.

Benefits of Using an Ultrasonic Cleaner

  1. Gentle cleaning: For items that demand a delicate touch, such as intricate mechanical components, the ultrasonic cleaner is perfect. These devices meticulously cleanse by penetrating tiny crevices, effectively eliminating residue without causing harm, leveraging the cavitation effect of ultrasonic cleaning technology.
  2. Versatile: Ultrasonic cleaners are a multipurpose asset across various industries. Automotive professionals utilise ultrasonic parts cleaners to meticulously remove lubricants or debris from machinery, while dental and laboratory settings depend on these ultrasonic cleaners for sterilising dental instruments and purifying glassware.
  3. Efficient: Ultrasonic cleaning is synonymous with efficiency, outperforming other methods by conserving water, showcasing energy efficiency, and accelerating the cleaning process to a remarkable degree.
  4. Safer: The ultrasonic cleaner not only prevents exposure to harmful fumes but also minimises injury risks associated with handling sharp objects, thus offering a safer alternative for cleaning in any work environment.
  5. Convenient and easy – Using an ultrasonic cleaner is a breeze: just place the part along with the detergent into the tank, and let the ultrasonic cleaning equipment do its job. This allows operators the freedom to attend to other duties while the cleaning cycle operates autonomously.

Why Choose an RND Ultrasonic Cleaner?

RND’s digital ultrasonic cleaner models are engineered to offer an automated and uniform cleaning experience, featuring high-end specifications for unparalleled performance. The ultrasonic cleaner series from RND enhances usability with three distinct power modes and essential features, such as fluid temperature regulation and cleaning cycle timers, demonstrating the sophistication of RND’s digital ultrasonic cleaners.

  • Easy-to-read digital display.
  • Robust ultrasonic tanks made from stainless steel.
  • Time selector for an automated and consistent process.
  • Heat selector for more suitable temperatures.
  • Energy-efficient (lower water consumption).
  • Comes with a basket and lid as standard.

RND: How to Use an Ultrasonic Cleaner

Cleaning Modes

All of RND’s digital ultrasonic cleaners have three cleaning modes to help achieve the best performance for the task: degas, delicate and full. Each mode is meticulously designed to boost the efficiency of the ultrasonic cleaner, ensuring superior cleaning outcomes.

Degas

Activating a degas cycle is a crucial step before submerging objects into the ultrasonic cleaner’s basin. This procedure ejects gases from the cleaning fluid, enhancing the liquid’s surface tension and promoting a more comprehensive and efficient cleaning process.

Delicate

For fragile items, the delicate mode on the ultrasonic cleaner reduces the power output by half, safeguarding sensitive materials. Employing this mode in conjunction with a tailored ultrasonic cleaning solution can achieve the best results for delicate components.

Full

When dealing with heavily soiled objects, the full power mode of the ultrasonic cleaner is the go-to option. Leveraging the device’s peak power along with precise temperature control and an appropriate cleaning solution ensures a strong and all-encompassing clean.

How to Clean

General cleaning

For lightly soiled items, employing the ultrasonic cleaner with warm water at 40°C is recommended. Commence with the degas mode, then determine the cleaning time based on the item—generally, a span of 2-10 minutes is sufficient for an exhaustive clean, though some objects might need an additional cycle to fully remove all impurities.

Ultrasonic cleaners that feature extended cycle times present a practical solution for those in search of a device that delivers effective performance with little supervision, guaranteeing a steady degree of ultrasonic cleaning without the need for constant attention.

Enhanced cleaning

In scenarios where parts require deeper cleaning, incorporating an ultrasonic solution into the water of your ultrasonic cleaner is advisable. It’s beneficial to adjust the cleaner’s temperature to a warmer range to clean more efficiently, ideally between 40°C and 60°C, which can significantly boost the ultrasonic cleaning process.

Extensive cleaning

When faced with tenacious dirt, such as heavy carbon deposits or rust on bare metal surfaces, employing an ultrasonic cleaner becomes crucial for a comprehensive cleaning experience. Begin by soaking the items in a strong ultrasonic solution, followed by engaging the full ultrasonic cleaning mode at an elevated temperature to achieve the best results.

How to Choose the Best Ultrasonic Cleaner for Your Application

Considering that ultrasonic cleaners represent a considerable investment, ensuring you select the best ultrasonic cleaner tailored to your needs is vital. Reflect on these factors carefully before finalising your purchase to make a well-informed decision.

Size

Industrial ultrasonic cleaners come in various sizes to suit different cleaning tasks or parts. Prior to purchasing, evaluate the size and volume of the components you plan to clean. If you anticipate cleaning numerous small parts, a larger model of an industrial ultrasonic cleaner might be the most efficient choice.

The dimensions of the baskets within an ultrasonic cleaner are critical, as they hold the items in place during the cleaning cycle. For an all-encompassing clean, parts should typically be submerged entirely. Hence, knowing the working depth of the cleaner’s fluid is essential for the ultrasonic cleaner to perform effectively.

For tasks that involve cleaning elongated objects, the 10 litre ultrasonic cleaner from RND is designed to cater to longer items, guaranteeing a snug fit and exceptional cleaning performance.

Ultrasonic Frequency

Most ultrasonic cleaners operate within the optimal frequency range of 35kHz to 45kHz, which is appropriate for diverse cleaning applications. However, for more demanding cleaning tasks, such as eliminating polishing pastes or lapping abrasives, utilising an ultrasonic cleaner at a lower frequency, like 25 kHz, can be notably more effective.

The fundamental concept is straightforward: the lower the frequency of the ultrasonic cleaner, the bigger the cavitation bubbles generated. These more significant cavitation bubbles lead to powerful implosions, making them highly effective at removing stubborn contaminants. On the flip side, higher frequencies, typically between 80 to 130 kHz, are better suited for the delicate cleaning of soft metals and intricate electronics, providing a gentle yet thorough cleaning experience.

25kHz – When set to its most vigorous setting, the ultrasonic cleaner excels at removing strong pollution, representing the pinnacle of its cleaning capabilities. However, it’s imperative to steer clear of this setting for fragile materials like glass to avert any potential harm.

40kHz – Functioning at its standard frequency power, the ultrasonic cleaner demonstrates proficiency in purging a wide spectrum of materials from impurities, underscoring its adaptability and cleaning prowess.

80kHz – Optimised for items with elaborate designs and hard-to-reach areas, the ultrasonic cleaner at this particular frequency ensures deep penetration of cavitation bubbles into tiny spaces, achieving thorough decontamination.

120 kHz and megasonic – For components requiring meticulous care, such as precision optics and highly sensitive parts, this frequency setting of the ultrasonic cleaner is the go-to option. It’s also the ideal choice for the final cleaning phase, ensuring the removal of any residual dust from already clean components.

Ultrasonic Temperature

Incorporating a heated solution can significantly boost the speed and effectiveness of the cleaning process. Certain ultrasonic cleaners are outfitted with thermostat-controlled heaters, which permit precise temperature modifications to further enhance the cleaning results.

Accessories for Ultrasonic Cleaners

On the Distrelec webshop, you can find a range of ultrasonic cleaning accessories from RND. Some of the main ones include baskets and beakers. 

Baskets

Each RND Ultrasonic Cleaner comes complete with a perfectly sized wire mesh basket, enhancing the device’s functionality. Customers have the option to purchase additional baskets, too. Baskets are recommended to evenly distribute ultrasonic waves and prevent hot spots during the cleaning cycle. All baskets are thoughtfully designed with handles that conveniently extend over the bath lip for secure and effortless handling.

Glass beakers

Beakers are the perfect container for small parts like electronic components and jewellery. Beakers are suspended in the tank with the appropriate basket, and the solution is only required in the beaker. Separating parts to individual beakers enables the user to group components together and use two different solutions at the same time whilst lowering the amount of solution needed. The beakers are made from borosilicate glass, which is a type of glass that is more resistant to rapid temperature changes. Using the jar means that items don’t get lost, and cleaning is faster.

Glass beaker baskets

The Distrelec webshop extends its range of ultrasonic accessories to include baskets for glass beakers, which are meticulously designed to securely hold the glass beakers within the ultrasonic cleaner’s tank. These baskets for glass beakers prevent spillage and guarantee safe handling, with a variety of sizes available to fit different beaker dimensions, ensuring a snug and secure fit for optimal cleaning. They are also available in bundles with the glass jars. 

Ultrasonic Cleaner Tips

Here are some maintenance tips that will keep your ultrasonic cleaner in fantastic condition:

The company is the world’s best Houshold Ultrasonic Cleaner supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

  • It’s imperative to maintain the correct solution level in your ultrasonic cleaner to safeguard the machine’s transducer and ensure its longevity. Operating the ultrasonic cleaner with a low solution level can be detrimental, so keeping the solution adequately filled is a key aspect of proper ultrasonic cleaner maintenance.
  • To maintain the integrity of both the item being cleaned and the ultrasonic cleaner’s tank, it is important to prevent the item from coming into direct contact with the tank’s bottom as it can scratch the machine.
  • Don’t use solutions with high levels of acid or alkaline.
  • Don’t slope the solution to prevent it from running into the device.
  • Make sure the machine doesn’t sit on a wet surface.
  • Regular and meticulous maintenance of your ultrasonic cleaning machine is crucial to ensure it delivers peak performance. Proper upkeep of the cleaner not only prolongs its life but also guarantees that it consistently provides exceptional cleaning results.

RND Ultrasonic Cleaning Tank 36L

Borosilicate Glass Cleaning Beaker 300ml

RND Ultrasonic Cleaning Basket for 36L Tank

Frequently Asked Questions