How Does grid connected inverter Work?

21 Jul.,2025

 

Solar Integration: Inverters and Grid Services Basics

What are Inverters?

An inverter is one of the most important pieces of equipment in a solar energy system. It’s a device that converts direct current (DC) electricity, which is what a solar panel generates, to alternating current (AC) electricity, which the electrical grid uses. In DC, electricity is maintained at constant voltage in one direction. In AC, electricity flows in both directions in the circuit as the voltage changes from positive to negative. Inverters are just one example of a class of devices called power electronics that regulate the flow of electrical power.

Click here to get more.

Fundamentally, an inverter accomplishes the DC-to-AC conversion by switching the direction of a DC input back and forth very rapidly. As a result, a DC input becomes an AC output. In addition, filters and other electronics can be used to produce a voltage that varies as a clean, repeating sine wave that can be injected into the power grid. The sine wave is a shape or pattern the voltage makes over time, and it’s the pattern of power that the grid can use without damaging electrical equipment, which is built to operate at certain frequencies and voltages.

The first inverters were created in the 19th century and were mechanical. A spinning motor, for example, would be used to continually change whether the DC source was connected forward or backward. Today we make electrical switches out of transistors, solid-state devices with no moving parts. Transistors are made of semiconductor materials like silicon or gallium arsenide. They control the flow of electricity in response to outside electrical signals.

If you have a household solar system, your inverter probably performs several functions. In addition to converting your solar energy into AC power, it can monitor the system and provide a portal for communication with computer networks. Solar-plus–battery storage systems rely on advanced inverters to operate without any support from the grid in case of outages, if they are designed to do so.

Toward an Inverter-Based Grid

Historically, electrical power has been predominantly generated by burning a fuel and creating steam, which then spins a turbine generator, which creates electricity. The motion of these generators produces AC power as the device rotates, which also sets the frequency, or the number of times the sine wave repeats. Power frequency is an important indicator for monitoring the health of the electrical grid. For instance, if there is too much load—too many devices consuming energy—then energy is removed from the grid faster than it can be supplied. As a result, the turbines will slow down and the AC frequency will decrease. Because the turbines are massive spinning objects, they resist changes in the frequency just as all objects resist changes in their motion, a property known as inertia.

As more solar systems are added to the grid, more inverters are being connected to the grid than ever before. Inverter-based generation can produce energy at any frequency and does not have the same inertial properties as steam-based generation, because there is no turbine involved. As a result, transitioning to an electrical grid with more inverters requires building smarter inverters that can respond to changes in frequency and other disruptions that occur during grid operations, and help stabilize the grid against those disruptions.

Grid Services and Inverters

Grid operators manage electricity supply and demand on the electric system by providing a range of grid services. Grid services are activities grid operators perform to maintain system-wide balance and manage electricity transmission better.

When the grid stops behaving as expected, like when there are deviations in voltage or frequency, smart inverters can respond in various ways. In general, the standard for small inverters, such as those attached to a household solar system, is to remain on during or “ride through” small disruptions in voltage or frequency, and if the disruption lasts for a long time or is larger than normal, they will disconnect themselves from the grid and shut down. Frequency response is especially important because a drop in frequency is associated with generation being knocked offline unexpectedly. In response to a change in frequency, inverters are configured to change their power output to restore the standard frequency. Inverter-based resources might also respond to signals from an operator to change their power output as other supply and demand on the electrical system fluctuates, a grid service known as automatic generation control. In order to provide grid services, inverters need to have sources of power that they can control. This could be either generation, such as a solar panel that is currently producing electricity, or storage, like a battery system that can be used to provide power that was previously stored.

Another grid service that some advanced inverters can supply is grid-forming. Grid-forming inverters can start up a grid if it goes down—a process known as black start. Traditional “grid-following” inverters require an outside signal from the electrical grid to determine when the switching will occur in order to produce a sine wave that can be injected into the power grid. In these systems, the power from the grid provides a signal that the inverter tries to match. More advanced grid-forming inverters can generate the signal themselves. For instance, a network of small solar panels might designate one of its inverters to operate in grid-forming mode while the rest follow its lead, like dance partners, forming a stable grid without any turbine-based generation.

Reactive power is one of the most important grid services inverters can provide. On the grid, voltage— the force that pushes electric charge—is always switching back and forth, and so is the current—the movement of the electric charge. Electrical power is maximized when voltage and current are synchronized. However, there may be times when the voltage and current have delays between their two alternating patterns like when a motor is running. If they are out of sync, some of the power flowing through the circuit cannot be absorbed by connected devices, resulting in a loss of efficiency. More total power will be needed to create the same amount of “real” power—the power the loads can absorb. To counteract this, utilities supply reactive power, which brings the voltage and current back in sync and makes the electricity easier to consume. This reactive power is not used itself, but rather makes other power useful. Modern inverters can both provide and absorb reactive power to help grids balance this important resource. In addition, because reactive power is difficult to transport long distances, distributed energy resources like rooftop solar are especially useful sources of reactive power.

Grid-tie inverter - Wikipedia

Electrical equipment Not to be confused with Synchronverter.

A grid-tie inverter converts direct current (DC) into an alternating current (AC) suitable for injecting into an electrical power grid, at the same voltage and frequency of that power grid. Grid-tie inverters are used between local electrical power generators: solar panel, wind turbine, hydro-electric, and the grid. [1]

To inject electrical power efficiently and safely into the grid, grid-tie inverters must accurately match the voltage, frequency and phase of the grid sine wave AC waveform.

Goto Jiwei to know more.

Payment for injected power

[edit]

Electricity companies, in some countries, pay for electrical power that is injected into the electricity utility grid. Payment is arranged in several ways.

With net metering the electricity company pays for the net power injected into the grid, as recorded by a meter on the customer's premises. For example, a customer may consume 400 kilowatt-hours over a month and may return 500 kilowatt-hours to the grid in the same month. In this case the electricity company would pay for the 100 kilowatt hours balance of power fed back into the grid. In the US, net metering policies vary by jurisdiction.

Feed-in tariff, based on a contract with a distribution company or other power authority, is where the customer is paid for electrical power injected into the grid.

In the United States, grid-interactive power systems are specified in the National Electrical Code (NEC), which also mandates requirements for grid-interactive inverters.

Operation

[edit]

Grid-tie inverters convert DC electrical power into AC power suitable for injecting into the electric utility company grid. The grid tie inverter (GTI) must match the phase of the grid and maintain the output voltage slightly higher than the grid voltage at any instant. A high-quality modern grid-tie inverter has a fixed unity power factor, which means its output voltage and current are perfectly lined up, and its phase angle is within 1° of the AC power grid. The inverter has an internal computer that senses the current AC grid waveform, and outputs a voltage to correspond with the grid. However, supplying reactive power to the grid might be necessary to keep the voltage in the local grid inside allowable limits.

Grid-tie inverters are designed to disconnect quickly from the grid if the utility grid goes down. In the United States, there is an NEC requirement[2] that in the event of a blackout, the grid tie inverter shut down to prevent the electricity it generates from harming persons repairing the power grid.

Properly configured, a grid tie inverter enables a building to use an alternative power generation system such as solar or wind power without extensive rewiring and without batteries. If the system produces insufficient power, the utility grid makes up the deficit.

Types

[edit]

Grid-tie inverters include conventional low-frequency types with transformer coupling, newer high-frequency types, also with transformer coupling, and transformerless types.[3] Instead of converting direct current directly into AC suitable for the grid, high-frequency transformers types use a computer process to convert the power to a high-frequency and then back to DC and then to the final AC output voltage suitable for the grid.[4]

Transformerless inverters, which are popular in Europe, are lighter, smaller, and more efficient than inverters with transformers. But transformerless inverters have been slow to enter the US market because of concerns that transformerless inverters, which do not have galvanic isolation between the DC side and grid, could inject dangerous DC voltages and currents into the grid under fault conditions.[5]

However, since , the NFPA's NEC allows transformerless, or non-galvanically isolated, inverters by removing the requirement that all solar electric systems be negative grounded and specifying new safety requirements. Amendments to VDE -1-1 and IEC define the design and procedures needed for such systems: primarily, ground current measurement and DC to grid isolation tests.

Datasheets

[edit]

Manufacturers datasheets for their inverters usually include the following data:

If you want to learn more, please visit our website grid connected inverter.

  • Rated output power: This value is provided in watts or kilowatts. For some inverters, they may provide an output rating for different output voltages. For instance, if the inverter can be configured for either 240 VAC or 208 VAC output, the rated power output may be different for each of those configurations.
  • Output voltage(s): This value indicates the utility voltages the inverter can connect to. For smaller inverters for residential use, the output voltage is usually 240 VAC. Inverters that target commercial applications are available for 208, 240, 277, 400, 480 or 600 VAC and may also produce three phase power.
  • Peak efficiency: The peak efficiency represents the highest efficiency that the inverter can achieve. Most grid-tie inverters on the market as of July have peak efficiencies of over 94%, some as high as 96%. The energy lost during inversion is for the most part converted into heat. Consequently, for an inverter to output its rated power it must have a power input that exceeds its output. For example, a  W inverter operating at full power at 95% efficiency requires an input of 5,263 W (rated power divided by efficiency). Inverters that are capable of producing power at different AC voltages may have different efficiencies associated with each voltage.
  • CEC weighted efficiency: This efficiency is published by the California Energy Commission on its GoSolar website. In contrast to peak efficiency, this value is an average efficiency and is a better representation of the inverter's operating profile. Inverters that are capable of producing power at different AC voltages may have different efficiencies associated with each voltage.[6]
  • Maximum input current: This is the maximum amount of direct current that the inverter can use. If a system, solar cells for example, produces a current in excess of the maximum input current, that current is not used by the inverter.
  • Maximum output current: The maximum output current is the maximum continuous alternating current that the inverter can supply. This value is typically used to determine the minimum current rating of the over-current protection devices (e.g., breakers and fuses) and disconnects required for the output circuit. Inverters that can produce power at different AC voltages have different maximum outputs for each voltage.
  • Peak power tracking voltage: This represents the DC voltage range in which the inverter's maximum point power tracker operates. The system designer must configure the strings optimally so that during the majority of the year, the voltage of the strings are within this range. This can be a difficult task since voltage fluctuates with temperature changes.
  • Start voltage: This value is not listed on all inverter datasheets. The value indicates the minimum DC voltage required for the inverter to turn on and operate. This is especially important for solar applications, because the system designer must be sure that there is a sufficient number of solar modules wired in series in each string to produce this voltage. If this value is not provided by the manufacturer, system designers typically use the lower band of the peak power tracking voltage range as the inverter's minimum voltage.
  • IPxx rating: The Ingress Protection rating or IP Code classifies and rates the level of protection provided against the ingress of solid foreign objects (first digit) or water (second digit), a higher digit means greater protection. In the US the NEMA enclosure type is used similarly to the international rating. Most inverters are rated for outdoors installation with IP45 (no dust protection) or IP65 (dust tight), or in the US, NEMA 3R (no windblown dust protection) or NEMA 4X (windblown dust, direct water splash and additional corrosion protection).
  • Certifications/Compliance: Certifications required by electric utilities and local electric codes for grid tie approval such as UL [7] and emerging standard UL SA[8]

See also

[edit]
  • Grid-tied electrical system
  • Inverter (electrical)
  • Islanding
  • Soft-switching three-level inverter
  • Solar inverter
  • Stand-alone inverter
  • Tesla Powerwall

References and further reading

[edit]