Why is gate valve tester Better?

14 Jul.,2025

 

Valve Testing - Hydrostatic, Pneumatic, Shell, Seat, Fire...

The realization of safe and smooth operations of industrial processes is heavily reliant on valves performing their function with precision. Thus, valve testing ensures that these valves meet design specifications for the duration of their operational life.

You will get efficient and thoughtful service from MetalsKingdom.

Generally, valve testing simulates operating conditions in a controlled environment to ensure fit for service valves. However, testing also occurs periodically after installation in line with standard practices.

In this article, we will review common valve testing types and industry standards that offer guidelines for valve testing.

There are several types of testing to which a valve could undergo. The required test depends on the application, manufacturer standards, and customer specifications. The following sections examine common tests, an overview of their procedure, and industry guidelines.

General Pressure Testing

This test involves filling a valve body with a testing fluid, which is usually water with a corrosion inhibitor. Then, technicians apply pressure over a specific period of time. The time and level of pressure varies depending on factors including the valve material, valve size, and category of pressure test. But in most cases, the pressure level is higher than the operational/working pressure of the valve. Also, the procedure for the pressure test varies depending on the type of valve in question. Generally, pressure tests aim to ascertain the integrity of the valve shell, seat, and seal against leakages due to pressure. After carrying out a test, a valve will not be accepted if the following occurs:

  • There is any distortion that disrupts the valve operation, due to the test.
  • Visible leaks anywhere in the valve body/bonnet assembly.
  • Leakage via static seals (packing) and gasketed joints, except where permitted by design the test standard.

Common industry guidelines for pressure testing valves can be found in ASME B16.34, API 598, MSS-SP-61, API 527, and ISO . Many tests are recorded on paper wheel charts or manually, although digital options are becoming more prevalent.

Hydrostatic vs Pneumatic Pressure Testing

Although water (hydrostatic) is the most common test medium in pressure testing, some conditions require pneumatic pressure testing of valves. For pneumatic testing, air or an inert gas such as nitrogen are the preferred media. Generally, in industry, hydrostatic testing is ideal for high-pressure applications where the equipment is not moisture sensitive.

In situations where moisture can damage certain equipment – usually via corrosion –  or alter the chemical balance in the system, pneumatic testing is recommended. Also, industry guidelines recommend the use of pneumatic testing for cryogenic and low temperature valves. This is because it is difficult to remove all water after the test. The presence of moisture in an operating system is highly discouraged. The table below highlights more of the differences between hydrostatic and pneumatic testing in line with standards and industry practices.

Note: Testing above 100 psi gas pressure can be very dangerous due to the expansion properties of a gas.

When pressure testing a valve, there are key components that are given a closer look for the duration of the process. Three of these include the shell, seal, and seat.

Shell Testing

The valve shell refers to the main body of the device. Moreover, its testing in the industry is driven mostly by guidelines from API 598 and ASME B16.34. Typically, the valve is mounted on a test bench and partially opened. Then, the shell is pressurized, with ASME B16.34 recommending a minimum of 1.5 times the valve pressure rating at 100 ℉ (38 ℃) for hydrostatic testing. While that of pneumatic seat testing is 1.1 times the maximum allowable pressure. Pneumatic testing is done to 80-100 psi. Also, both the API and ASME standards recommend varying test duration depending on the size of the valve being tested. The table below summarizes the test duration.

In addition, the test water temperature should range between 41 ℉ (5 ℃) and 122 ℉ (50 ℃). And the pressure gauge used for measurements should have calibration ranging from not less than 1.5 times the test pressure, to not more than 4 times the test pressure. For a valve shell to pass the test, there shall be no visible leakage for the duration of the test.

A valve stem seal (packing) is also monitored during the shell test. For adjustable stem seals, the occurrence of leakage during the test is NOT a cause for rejection, as long as the manufacturer can demonstrate the seal’s capacity to retain at least the maximum allowable pressure of the valve without any visible leakage. Adjustments to the packing are allowed to eliminate leakage. For non-adjustable stem seals, no leakage is permitted during the shell test.

Seat Testing

Typically, the valve seat test is carried out after testing the valve shell. With the same API and ASME standards as with the shell test providing guidance. The recommended pressure is 110% of the maximum allowable pressure at 100 ℉ (38 ℃), and the test time varies with size in accordance with ASME B16.34.

The test duration recommendations from API 598 are similar to these, and it also states the allowable leakage rates from the seat.

For valve sizes greater than 14 inches, the hydrostatic test leakage rate should not exceed two drops per minute per inch. While the pneumatic test leakage rate should be less than four bubbles per minute per inch.

Fire Testing

One of the requirements of industrial valves is having reliable fire protection. This holds particularly true for sensitive applications such as oil and gas, refinery, and petrochemical industries. Moreover, valves in these industries must guarantee a reliable and safe shut-off in case of a fire incident.

The company is the world’s best gate valve tester supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

In a fire test, a valve is pressurized and subject to high-temperature flames between ℉ (750 ℃) and ℉ ( ℃) for a period of thirty minutes. During this period, the heat intensity and the leakages – both internal and external – are monitored and measured. Also, after extinguishing the flames and allowing the valve to cool, the technician test its pressure-retaining capacity. All through the test, the leakage levels should be within acceptable limits for the valve to pass as being “fire-safe”. Some key things to note about fire testing include:

  • Leakages from the piping to valve end connections are not part of the acceptance criteria.
  • Technicians measure temperature measurement from at least two places. One is 1” (25 mm) from the upper stem packing box on the horizontal centerline, while the other measurement point is 1” below the valve.

Standards such as API 607, API 6FA, ISO , BS , and BS constitute industry guidelines for fire testing. On the basis of these guidelines, several companies set up their bespoke procedure for fire-safety valves. Of all the fire testing guidelines, API 607 and API 6FA are the most widely used. API 607 provides testing criteria for valves with non-metallic seating and quarter-turn valves. API 6FA provides the testing criteria for metal seated valves.

Note: Most metal-to-metal seated Gates, Globes, and Swing checks are NOT tested to API 607 due to their inherently Fire Safe Design. (There are no soft parts to melt during a fire.)

Fugitive Emissions Testing

A fugitive emissions test aims to assess the impact of gas or vapor leakage from a valve. Although this leakage can be from anywhere along the piping system, statistics show that approximately 60% of fugitive emissions stem from valves. This data highlights the importance of this test. In addition, the impact of these emissions has significant consequences including:

  • Increase in the risk of fire and explosion.
  • Economic losses due to leakage of the commodity.
  • Long-term health risk to the workers and communities in close proximity.
  • Environmental damage.

When carrying out fugitive emission tests, the most common test gases are helium and methane. The valve is pressurized with the test gas at varying temperatures. Then technicians monitor for leakages via the sniffing or vacuum method. International standards such as API 622, API 624, API 644, ISO -1, and ISO -2 all provide guidance on how to carry out this valve test. However, most organizations develop their specifications to ensure application suitability.

Cryogenic Testing

Cryogenic testing of valves is done for those operating at low temperatures or in cryogenic service. The test procedure involves placing the valve within an insulated tank, with liquid nitrogen at temperatures of down to -320 ℉ (-196 ℃).

Then, helium pressurizes the valve to the operating pressure specified for its class. During the test, technicians closely monitor the temperature inside the valve and leakages. In the end, the valve is depressurized and warmed up until it attains ambient temperature. Thereafter, a detailed report summarizes the performance of the valve and whether leakages were within acceptable limits. There are several international standards that provide guidelines for cryogenic valve testing including ISO -1, ISO -2, EN , and BS .

In addition to the standards mentioned in the previous section, there are a host of standards that provide recommendations for different valve types and test procedures. The table below provides a list of these standards and the areas of testing they cover, for quick referencing.

Pressure Testing Methods for Gate Valves

 What is a Gate Valve?

Gate valves are commonly used valves that completely shut off fluid flow by moving a gate-like barrier into the pipeline path, creating a powerful seal. In the fully open position, gate valves completely remove the gate from the fluid path, which runs straight through the valve causing very little to no loss in flow rate or flow volume.

Due to their construction design, sanitary gate valves are quite slow to actuate — it takes several full rotations of the knob or wheel handle actuator to change the gate’s position. This quality makes them suitable only for applications with infrequent on/off switching. If you need a fast-actuating valve with other similar qualities, consider using a ball valve instead.

How does a gate valve work?

The opening and closing member of a flanged gate valve is the gate plate. The gate plate moves perpendicular to the pipeline’s fluid flow direction. Gate valves can only be used in the fully open or fully closed positions; they are not suitable for regulation and throttling.

The gate valve’s closing mechanism is the sealing surface of the gate plate and valve seat, which are highly smooth, flat, and consistent. They adhere directly to each other, creating a dependable seal that prevents the medium from flowing through the valve. They rely on the shape of the top mold, the spring, or the gate plate to enhance the sealing effect.

Applications: The uses of gate valves

Gate valves are mainly used to cut off flow through the pipeline. They offer very little fluid resistance because the valve’s opening is typically the same diameter as the pipeline. In this sense, it can be described as a straight-through flow valve. It can be used in circumstances where the medium flows in both directions. It is not directional, so the sealing surface is not prone to erosion when the valve is fully open. A wide variety of gate valves are made in different DN sizes; they are commonly manufactured in DN50 up to DN.

Gate valves are used in several applications like process manufacturing, automotive, oil & gas, pharmaceutical, and marine industries. Gate valves are also one of the most widely used valves in water supply systems.

How to Pressure Test a Gate Valve: Three Methods

The strength test of the gate valve is the same as that of the sanitary shut-off valve. There are two types of sealing performance tests for gate valves.

Standard Gate Valve Test Method:

  1. Open the gate plate.
  2. Allow the pressure inside the valve to rise to the specified test value.
  3. Close the gate plate.
  4. Immediately remove the gate valve to check for leakage on both sides of the gate plate sealing. If you find any leakage, immediately replace the valve with a new one.

Alternate Gate Valve Testing Methods

Middle-Pressure Test:

  1. Alternatively, you can directly instill the test medium into the plug on the valve cover to the specified value.
  2. Check the sealing at both sides of the gate plate. This method is not applicable in gate valves whose nominal diameter is less than DN32mm.

Blind Plate Test:

  1. Open the gate plate. 
  2. Allow the system pressure in the valve to rise to the specified value. 
  3. Close the gate plate.
  4. Open the blind plate on one side to check the sealing surface for leakage. 
  5. Repeat the test until it is qualified.

The sealing performance test of the pneumatic gate valve stuffing and gasket should be carried out before the valve’s sealing performance test.

If you are looking for more details, kindly visit pipe beveling machinery.

Conclusion