• Water Science School HOME • Water Use topics •
Hengyang contains other products and information you need, so please check it out.
So just how do we get electricity from water? Actually, hydroelectric and coal-fired power plants produce electricity in a similar way. In both cases a power source is used to turn a propeller-like piece called a turbine, which then turns a metal shaft in an electric generator, which is the motor that produces electricity. A coal-fired power plant uses steam to turn the turbine blades; whereas a hydroelectric plant uses falling water to turn the turbine. The results are the same.
Take a look at this diagram (courtesy of the Tennessee Valley Authority) of a hydroelectric power plant to see the details:
The theory is to build a dam on a large river that has a large drop in elevation (there are not many hydroelectric plants in Kansas or Florida). The dam stores lots of water behind it in the reservoir. Near the bottom of the dam wall there is the water intake. Gravity causes it to fall through the penstock inside the dam. At the end of the penstock there is a turbine propellor, which is turned by the moving water. The shaft from the turbine goes up into the generator, which produces the power. Power lines are connected to the generator that carry electricity to your home and mine. The water continues past the propellor through the tailrace into the river past the dam. By the way, it is not a good idea to be playing in the water right below a dam when water is released!
As to how this generator works, the Corps of Engineers explains it this way:
"A hydraulic turbine converts the energy of flowing water into mechanical energy. A hydroelectric generator converts this mechanical energy into electricity. The operation of a generator is based on the principles discovered by Faraday. He found that when a magnet is moved past a conductor, it causes electricity to flow. In a large generator, electromagnets are made by circulating direct current through loops of wire wound around stacks of magnetic steel laminations. These are called field poles, and are mounted on the perimeter of the rotor. The rotor is attached to the turbine shaft, and rotates at a fixed speed. When the rotor turns, it causes the field poles (the electromagnets) to move past the conductors mounted in the stator. This, in turn, causes electricity to flow and a voltage to develop at the generator output terminals."
Demand for electricity is not "flat" and constant. Demand goes up and down during the day, and overnight there is less need for electricity in homes, businesses, and other facilities. For example, here in Atlanta, Georgia at 5:00 PM on a hot August weekend day, you can bet there is a huge demand for electricity to run millions of air conditioners! But, 12 hours later at 5:00 AM .... not so much. Hydroelectric plants are more efficient at providing for peak power demands during short periods than are fossil-fuel and nuclear power plants, and one way of doing that is by using "pumped storage", which reuses the same water more than once.
Pumped storage is a method of keeping water in reserve for peak period power demands by pumping water that has already flowed through the turbines back up a storage pool above the power plant at a time when customer demand for energy is low, such as during the middle of the night. The water is then allowed to flow back through the turbine-generators at times when demand is high and a heavy load is placed on the system.
The reservoir acts much like a battery, storing power in the form of water when demands are low and producing maximum power during daily and seasonal peak periods. An advantage of pumped storage is that hydroelectric generating units are able to start up quickly and make rapid adjustments in output. They operate efficiently when used for one hour or several hours. Because pumped storage reservoirs are relatively small, construction costs are generally low compared with conventional hydropower facilities.
• Water Science School HOME • Water Use topics •
So just how do we get electricity from water? Actually, hydroelectric and coal-fired power plants produce electricity in a similar way. In both cases a power source is used to turn a propeller-like piece called a turbine, which then turns a metal shaft in an electric generator, which is the motor that produces electricity. A coal-fired power plant uses steam to turn the turbine blades; whereas a hydroelectric plant uses falling water to turn the turbine. The results are the same.
Take a look at this diagram (courtesy of the Tennessee Valley Authority) of a hydroelectric power plant to see the details:
The theory is to build a dam on a large river that has a large drop in elevation (there are not many hydroelectric plants in Kansas or Florida). The dam stores lots of water behind it in the reservoir. Near the bottom of the dam wall there is the water intake. Gravity causes it to fall through the penstock inside the dam. At the end of the penstock there is a turbine propellor, which is turned by the moving water. The shaft from the turbine goes up into the generator, which produces the power. Power lines are connected to the generator that carry electricity to your home and mine. The water continues past the propellor through the tailrace into the river past the dam. By the way, it is not a good idea to be playing in the water right below a dam when water is released!
As to how this generator works, the Corps of Engineers explains it this way:
"A hydraulic turbine converts the energy of flowing water into mechanical energy. A hydroelectric generator converts this mechanical energy into electricity. The operation of a generator is based on the principles discovered by Faraday. He found that when a magnet is moved past a conductor, it causes electricity to flow. In a large generator, electromagnets are made by circulating direct current through loops of wire wound around stacks of magnetic steel laminations. These are called field poles, and are mounted on the perimeter of the rotor. The rotor is attached to the turbine shaft, and rotates at a fixed speed. When the rotor turns, it causes the field poles (the electromagnets) to move past the conductors mounted in the stator. This, in turn, causes electricity to flow and a voltage to develop at the generator output terminals."
Demand for electricity is not "flat" and constant. Demand goes up and down during the day, and overnight there is less need for electricity in homes, businesses, and other facilities. For example, here in Atlanta, Georgia at 5:00 PM on a hot August weekend day, you can bet there is a huge demand for electricity to run millions of air conditioners! But, 12 hours later at 5:00 AM .... not so much. Hydroelectric plants are more efficient at providing for peak power demands during short periods than are fossil-fuel and nuclear power plants, and one way of doing that is by using "pumped storage", which reuses the same water more than once.
Pumped storage is a method of keeping water in reserve for peak period power demands by pumping water that has already flowed through the turbines back up a storage pool above the power plant at a time when customer demand for energy is low, such as during the middle of the night. The water is then allowed to flow back through the turbine-generators at times when demand is high and a heavy load is placed on the system.
The reservoir acts much like a battery, storing power in the form of water when demands are low and producing maximum power during daily and seasonal peak periods. An advantage of pumped storage is that hydroelectric generating units are able to start up quickly and make rapid adjustments in output. They operate efficiently when used for one hour or several hours. Because pumped storage reservoirs are relatively small, construction costs are generally low compared with conventional hydropower facilities.
Worldwide, hydropower plants produce about 24 percent of the world's electricity and supply more than 1 billion people with power. The world's hydropower plants output a combined total of 675,000 megawatts, the energy equivalent of 3.6 billion barrels of oil, according to the National Renewable Energy Laboratory. There are more than 2,000 hydropower plants operating in the United States, making hydropower the country's largest renewable energy source.
In this article, we'll take a look at how falling water creates energy and learn about the hydrologic cycle that creates the water flow essential for hydropower. You will also get a glimpse at one unique application of hydropower that may affect your daily life.
Advertisement
When watching a river roll by, it's hard to imagine the force it's carrying. If you have ever been white-water rafting, then you've felt a small part of the river's power. White-water rapids are created as a river, carrying a large amount of water downhill, bottlenecks through a narrow passageway. As the river is forced through this opening, its flow quickens. Floods are another example of how much force a tremendous volume of water can have.
Hydropower plants harness water's energy and use simple mechanics to convert that energy into electricity. Hydropower plants are actually based on a rather simple concept -- water flowing through a dam turns a turbine, which turns a generator.
Advertisement
Here are the basic components of a conventional hydropower plant:
The water in the reservoir is considered stored energy. When the gates open, the water flowing through the penstock becomes kinetic energy because it's in motion. The amount of electricity that is generated is determined by several factors. Two of those factors are the volume of water flow and the amount of hydraulic head. The head refers to the distance between the water surface and the turbines. As the head and flow increase, so does the electricity generated. The head is usually dependent upon the amount of water in the reservoir.
Simple BeginningsUse of hydropower peaked in the mid-20th century, but the idea of using water for power generation goes back thousands of years. A hydropower plant is basically an oversized water wheel. More than 2,000 years ago, the Greeks are said to have used a water wheel for grinding wheat into flour. These ancient water wheels are like the turbines of today, spinning as a stream of water hits the blades. The gears of the wheel ground the wheat into flour.
Advertisement
The company is the world’s best Steel Hydraulic Dam supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.
There's another type of hydropower plant, called the pumped-storage plant. In a conventional hydropower plant, the water from the reservoir flows through the plant, exits and is carried down stream. A pumped-storage plant has two reservoirs:
Using a reversible turbine, the plant can pump water back to the upper reservoir. This is done in off-peak hours. Essentially, the second reservoir refills the upper reservoir. By pumping water back to the upper reservoir, the plant has more water to generate electricity during periods of peak consumption.
Advertisement
The heart of the hydroelectric power plant is the generator. Most hydropower plants have several of these generators.
The generator, as you might have guessed, generates the electricity. The basic process of generating electricity in this manner is to rotate a series of magnets inside coils of wire. This process moves electrons, which produces electrical current.
The Hoover Dam has a total of 17 generators, each of which can generate up to 133 megawatts. The total capacity of the Hoover Dam hydropower plant is 2,074 megawatts. Each generator is made of certain basic parts:
As the turbine turns, the excitor sends an electrical current to the rotor. The rotor is a series of large electromagnets that spins inside a tightly-wound coil of copper wire, called the stator. The magnetic field between the coil and the magnets creates an electric current.
In the Hoover Dam, a current of 16,500 amps moves from the generator to the transformer, where the current ramps up to 230,000 amps before being transmitted.
Advertisement
Hydropower plants take advantage of a naturally occurring, continuous process -- the process that causes rain to fall and rivers to rise. Every day, our planet loses a small amount of water through the atmosphere as ultraviolet rays break water molecules apart. But at the same time, new water is emitted from the inner part of the Earth through volcanic activity. The amount of water created and the amount of water lost is about the same.
At any one time, the world's total volume of water is in many different forms. It can be liquid, as in oceans, rivers and rain; solid, as in glaciers; or gaseous, as in the invisible water vapor in the air. Water changes states as it is moved around the planet by wind currents. Wind currents are generated by the heating activity of the sun. Air-current cycles are created by the sun shining more on the equator than on other areas of the planet.
Advertisement
Air-current cycles drive the Earth's water supply through a cycle of its own, called the hydrologic cycle. As the sun heats liquid water, the water evaporates into vapor in the air. The sun heats the air, causing the air to rise in the atmosphere. The air is colder higher up, so as the water vapor rises, it cools, condensing into droplets. When enough droplets accumulate in one area, the droplets may become heavy enough to fall back to Earth as precipitation.
The hydrologic cycle is important to hydropower plants because they depend on water flow. If there is a lack of rain near the plant, water won't collect upstream. With no water collecting up stream, less water flows through the hydropower plant and less electricity is generated.
Did You Know?Sources: U.S. Bureau of Reclamation and the National Renewable Energy Laboratory
Advertisement
The basic idea of hydropower is to use the power of a moving liquid to turn a turbine blade. Typically, a large dam has to be built in the middle of a river to perform this function. A new invention is capitalizing on the idea of hydropower on a much smaller scale to provide electricity for portable electronic devices.
Inventor Robert Komarechka of Ontario, Canada, has come up with the idea of placing small hydropower generators into the soles of shoes. He believes these micro-turbines will generate enough electricity to power almost any gadget. In May , Komarechka received a patent for his unique foot-powered device.
Advertisement
There's a very basic principle to how we walk: The foot falls heel-to-toe during each step. As your foot lands on the ground, force is brought down through your heel. When you prepare for your next step, you roll your foot forward, so the force is transferred to the ball of your foot. Komarechka apparently noticed this basic principle of walking and has developed an idea to harness the power of this everyday activity.
There are five parts to Komarechka's "footwear with hydroelectric generator assembly," as described in its patent:
As a person walks, the compression of the fluid in the sac located in the shoe's heel will force fluid through the conduit and into the hydroelectric generator module. As the user continues to walk, the heel will be lifted and downward pressure will be exerted on the sac under the ball of the person's foot. The movement of the fluid will rotate the rotor and shaft to produce electricity.
An exterior socket will be provided to connect wires to a portable device. A power-control output unit may also be provided to be worn on the user's belt. Electronic devices can then be attached to this power-control output unit, which will provide an steady supply of electricity.
"With the increase in the number of battery-powered, portable devices," the patent reads,"there is an increasing need to provide a long-lasting, adaptable, efficient electrical source." Komarechka expects that his device will be used for powering portable computers, cell phones, CD players, GPS receivers and two-way radios.
For more information on hydropower plants and related topics, check out the links on the next page.
Advertisement
Cite This!Please copy/paste the following text to properly cite this HowStuffWorks.com article:
For more information, please visit Pneumatic Fenders.